9 research outputs found

    Graphen - epitaktisches Wachstum, Charakterisierung und nicht-klassische elektrische Bauelementekonzepte

    Get PDF
    In der vorliegenden Dissertation wurden die Schwerpunkte des Wachstums auf semi-isolierendem 6H-SiC, der Schicht- als auch der Bauelementecharakterisierung auf Basis von epitaktischem Graphen behandelt. Die Schichten wurden mittels REM, AFM, LEED, XPS und ARPES untersucht. Anhand von REM Aufnahmen wurde durch einen neuartigen Ansatz die QualitĂ€t der Schichten ĂŒber die Bildentropie mit den Wachstumsparametern korreliert. FĂŒr die Bestimmung der Schichtdicke mit Hilfe von XPS wurden (a-)symmetrische Fit-Funktionen und ihr Fehler bei der Dickenbestimmung betrachtet. Der zweite Schwerpunkt befasst sich mit der Charakterisierung der hergestellten Schichten durch Raman- und FTIR-Spektroskopie. Die EinflĂŒsse von Verspannung, Fermi-Niveau und Lagenzahl auf das Raman-Spektrum des Graphen wurden klassifiziert und quantifiziert. Uniaxiale konnte von biaxialer Dehnung anhand des Unterschieds in der G/2D-Dispersion unterschieden werden, die Asymmetrie der G-Mode wird dabei maßgeblich von uniaxialer Dehnung, der Lage des Fermi-Niveaus als auch durch Transferdotierung bei Anwesenheit von Adsorbaten beeinflusst. Zunehmende Lagenzahl verursachte eine Blauverschiebung der 2D-Mode bei zunehmender Halbwertbreite. Mittels FTIR wurden Änderung des Reststrahlenbands des SiCs in AbhĂ€ngigkeit des Wachstums durch Anregung eines OberflĂ€chenplasmon-Polaritons im Graphen untersucht. Eine Auswertemethode wurde entwickelt, um die sich im Divisionsspektrum der ReflektivitĂ€ten ausbildende Fano-Resonanz zu beschreiben. Die IntensitĂ€t der resultierenden Fano-Resonanz wird dabei maßgeblich von der Verschiebung der Modell-Oszillatoren zueinander beeinflusst. Der dritte Schwerpunkt befasst sich mit der Strukturierung und Charakterisierung von vollstĂ€ndig aus Graphen bestehenden, Three Terminal Junctions (TTJ) und Side-Gate-Transistoren (SG-FET). FĂŒr die Vermessung kleinster Strukturbreiten anhand von REM-Aufnahmen wurden Methoden zur Schwingungskorrektur und der Breitenbestimmung nahe/unterhalb der Auflösungsgrenze des REMs hergeleitet. Es konnte gezeigt werden, dass TTJs einen Gleichrichtungseffekt mit hoher Gleichrichtungseffizienz aufweisen. Des Weiteren wurden die auftretenden StromverstĂ€rkungseffekte untersucht. Die realisierten SG-FETs zeigen vergleichbar gute Eigenschaften wie konventionelle Top-Gate-Transistoren auf bei Minimierung parasitĂ€rer EinflĂŒsse.In this work, epitaxial graphene is characterized in three key aspects, on basis of the growth on semi-insulating 6H-SiC, its layer properties and the figures of merit of derived all-graphene electronic devices. The graphene layers are initially investigated by SEM, AFM, LEED, XPS and ARPES. Using SEM images, a new approach is developed to allow a quantification of the visual graphene quality through the image entropy. For an accurate determination of the layer thickness, XPS spectra are analyzed by fitting (a-)symmetric fit functions and their respective errors are discussed. The second aspect consists of the characterization of the grown layers by Raman and FTIR spectroscopy. The influences of strain, Fermi level and layer thickness on the Raman spectrum of graphene are identified and quantified. It is shown, that uniaxial strain can be differed from biaxial one through the deviation in the G/2D dispersion of the Raman modes. The asymmetry of the G mode is mainly influenced by uniaxial strain, the Fermi level as well as by transfer doping in presence of adsorbates. Increasing layer count leads to a blue shifting 2D mode with increasing line width. The fabricated graphene layers are studied with FTIR spectroscopy to investigate the changes in the reststrahl band of the SiC through the formation of a graphene surface plasmon polariton in dependency of the growth parameters. A method is developed to describe and analyze the resulting Fano resonance in the division spectra of the reflectance. The intensity of the resonance is mainly influenced by the relative shift of the two model oscillators. The third aspect addresses the structuring and characterization of electronic devices in terms of three terminal junctions (TTJ) and side gate transistors (SG-FET). For the accurate determination of smallest structure dimensions through SEM, methods for vibration correction and the measurement near/beyond the resolution limit of the SEM are derived. It is shown, that TTJs exhibit a rectification effect with high rectification efficiency. Additionally, the appearing current amplification is investigated. The realized SG-FETs show extraordinary good characteristics in comparison to conventional top gate transistors with the advantage of minimizing parasitic influences

    Anisotropy of the ΔE effect in Ni-based magnetoelectric cantilevers: a finite element method analysis

    Get PDF
    In recent investigations of magnetoelectric sensors based on microelectromechanical cantilevers made of TiN/AlN/Ni, a complex eigenfrequency behavior arising from the anisotropic ΔE effect was demonstrated. Within this work, a FEM simulation model based on this material system is presented to allow an investigation of the vibrational properties of cantilever-based sensors derived from magnetocrystalline anisotropy while avoiding other anisotropic contributions. Using the magnetocrystalline ΔE effect, a magnetic hardening of Nickel is demonstrated for the (110) as well as the (111) orientation. The sensitivity is extracted from the field-dependent eigenfrequency curves. It is found, that the transitions of the individual magnetic domain states in the magnetization process are the dominant influencing factor on the sensitivity for all crystal orientations. It is shown, that Nickel layers in the sensor aligned along the medium or hard axis yield a higher sensitivity than layers along the easy axis. The peak sensitivity was determined to 41.3 T −1 for (110) in-plane-oriented Nickel at a magnetic bias flux of 1.78 mT. The results achieved by FEM simulations are compared to the results calculated by the Euler–Bernoulli theory

    Automated parameter extraction of ScAlN MEMS devices using an extended Euler-Bernoulli beam theory

    Get PDF
    Magnetoelectric sensors provide the ability to measure magnetic fields down to the pico tesla range and are currently the subject of intense research. Such sensors usually combine a piezoelectric and a magnetostrictive material, so that magnetically induced stresses can be measured electrically. Scandium aluminium nitride gained a lot of attraction in the last few years due to its enhanced piezoelectric properties. Its usage as resonantly driven microelectromechanical system (MEMS) in such sensors is accompanied by a manifold of influences from crystal growth leading to impacts on the electrical and mechanical parameters. Usual investigations via nanoindentation allow a fast determination of mechanical properties with the disadvantage of lacking the access to the anisotropy of specific properties. Such anisotropy effects are investigated in this work in terms of the Young’s modulus and the strain on basis of a MEMS structures through a newly developed fully automated procedure of eigenfrequency fitting based on a new non-Lorentzian fit function and subsequent analysis using an extended Euler–Bernoulli theory. The introduced procedure is able to increase the resolution of the derived parameters compared to the common nanoindentation technique and hence allows detailed investigations of the behavior of magnetoelectric sensors, especially of the magnetic field dependent Young‘s modulus of the magnetostrictive layer

    Silicon carbide - graphene nano-gratings on 4H and 6H semi-insulating SiC

    Get PDF
    A technical methodology of fabrication of hierarchically scaled multitude graphene nanogratings with varying pitches ranging from the micrometer down to sub 40 nm scale combined with sub 10 nm step heights on 4H and 6H semi-insulating SiC for length scale measurements is proposed. The nanogratings were fabricated using electron-beam lithography combined with dry etching of graphene, incorporating a standard semiconductor processing technology. A scientific evaluation of critical dimension, etching step heights, and surface characterization of graphene nanograting on both polytypes were compared and evaluated

    Multispectral electroluminescence enhancement of single-walled carbon nanotubes coupled to periodic nanodisk arrays

    Get PDF
    The integration of periodic nanodisk arrays into the channel of a light-emitting field-effect transistor leads to enhanced and directional electroluminescence from thin films of purified semiconducting single-walled carbon nanotubes. The maximum enhancement wavelength is tunable across the near-infrared and is directly linked to the periodicity of the arrays. Numerical calculations confirm the role of increased local electric fields in the observed emission modification. Large current densities are easily achieved due to the high charge carrier mobilities of carbon nanotubes and will facilitate new electrically driven plasmonic devices

    Broadband tunable, polarization-selective and directional emission of (6,5) carbon nanotubes coupled to plasmonic crystals

    Get PDF
    We demonstrate broadband tunability of light emission from dense (6,5) single-walled carbon nanotube thin films via efficient coupling to periodic arrays of gold nanodisks that support surface lattice resonances (SLRs). We thus eliminate the need to select single-walled carbon nanotubes (SWNTs) with different chiralities to obtain narrow linewidth emission at specific near-infrared wavelengths. Emission from these hybrid films is spectrally narrow (20–40 meV) yet broadly tunable (∌1000–1500 nm) and highly directional (divergence <1.5°). In addition, SLR scattering renders the emission highly polarized, even though the SWNTs are randomly distributed. Numerical simulations are applied to correlate the increased local electric fields around the nanodisks with the observed enhancement of directional emission. The ability to control the emission properties of a single type of near-infrared emitting SWNTs over a wide range of wavelengths will enable application of carbon nanotubes in multifunctional photonic devices
    corecore